Analysis of Language Relatedness for the Development of Multilingual Automatic Speech Recognition for Ethiopian Languages

Martha Yifiru Tachbelie¹,², Solomon Teferra Abate¹,², Tanja Schultz¹

¹Cognitive Systems Lab
University of Bremen, Germany
²School of Information Science
Addis Ababa University, Ethiopia
{marthayifiru, abate, tanja.schultz}@uni-bremen.de

Abstract
In this paper, we present the analysis of GlobalPhone (GP) and speech corpora of Ethiopian languages (Amharic, Tigrigna, Oromo and Wolaytta). The aim of the analysis is to select speech data from GP for the development of multilingual Automatic Speech Recognition (ASR) system for the Ethiopian languages. To this end, phonetic overlaps among GP and Ethiopian languages have been analyzed. The result of our analysis shows that there is much phonetic overlap among Ethiopian languages although they are from three different language families. From GP, Turkish, Uyghur and Croatian are found to have much overlap with the Ethiopian languages. Moreover, morphological complexity of the GP and Ethiopian languages, reflected by type to token ratio (TTR) and out of vocabulary (OOV) rate, has been analyzed. Korean and Amharic have been identified as extremely morphologically complex compared to the other languages. Tigrigna, Russian, Turkish and Polish are also among the morphologically complex languages.

Keywords: Language relatedness, Multilingual ASR, GlobalPhone, Ethiopian Languages

1. Introduction

With more than 7000 languages in the world ([Ethnologue, 2019]) and the need to support multiple input and output languages, it is one of the most pressing challenges for the speech and language community to develop and deploy speech processing systems in yet unsupported languages rapidly and at reasonable costs ([Schultz, 2004, Schultz and Kirchhoff, 2006]). Major bottlenecks are the sparseness of speech and text data with corresponding pronunciation dictionaries, the lack of language conventions, and the gap between technology and language expertise. Data sparseness is a critical issue due to the fact that speech technologies heavily rely on statistical modeling schemes, such as Hidden Markov Models, Deep Neural Networks (DNN) for acoustic modeling and n-gram and DNN for language modeling. Although statistical modeling algorithms are mostly language independent and proved to work well for a variety of languages, reliable parameter estimation requires vast amounts of training data. On the other hand, large-scale data resources for research are available for less than 100 languages and the costs for these collections are prohibitive to all but the most widely spoken and economically viable languages. This calls for the development of cross-lingual and/or multilingual speech processing/recognition systems.

In cross-lingual speech recognition, resources of a language (source/donor language) are used to develop speech recognition system for another (target language) with or without little adaptation data from the target language. Multilingual speech recognition system is described as a system that is able to recognize language) with or without little adaptation data from the target language) with or without little adaptation data from the target language. Multilingual speech recognition system is described as a system that is able to recognize a new language. Another approach is to build a system which is able to recognize any (or many) of the available (source) languages at the same time, and this system is known as multilingual, multi-lingual, or cross-lingual recognition system.

In cross-lingual speech recognition, resources of a language (source/donor language) are used to develop speech recognition system for another (target language) with or without little adaptation data from the target language. Multilingual speech recognition system is described as a system that is able to recognize language) with or without little adaptation data from the target language. Multilingual speech recognition system is described as a system that is able to recognize any (or many) of the available (source) languages at the same time, and this system is known as multilingual, multi-lingual, or cross-lingual recognition system.

In this paper, we present the analysis of GlobalPhone (GP) and speech corpora of Ethiopian languages (Amharic, Tigrigna, Oromo and Wolaytta). The aim of the analysis is to select speech data from GP for the development of multilingual Automatic Speech Recognition (ASR) system for the Ethiopian languages. To this end, phonetic overlaps among GP and Ethiopian languages have been analyzed. The result of our analysis shows that there is much phonetic overlap among Ethiopian languages although they are from three different language families. From GP, Turkish, Uyghur and Croatian are found to have much overlap with the Ethiopian languages. Moreover, morphological complexity of the GP and Ethiopian languages, reflected by type to token ratio (TTR) and out of vocabulary (OOV) rate, has been analyzed. Korean and Amharic have been identified as extremely morphologically complex compared to the other languages. Tigrigna, Russian, Turkish and Polish are also among the morphologically complex languages.

Keywords: Language relatedness, Multilingual ASR, GlobalPhone, Ethiopian Languages

1. Introduction

With more than 7000 languages in the world ([Ethnologue, 2019]) and the need to support multiple input and output languages, it is one of the most pressing challenges for the speech and language community to develop and deploy speech processing systems in yet unsupported languages rapidly and at reasonable costs ([Schultz, 2004, Schultz and Kirchhoff, 2006]). Major bottlenecks are the sparseness of speech and text data with corresponding pronunciation dictionaries, the lack of language conventions, and the gap between technology and language expertise. Data sparseness is a critical issue due to the fact that speech technologies heavily rely on statistical modeling schemes, such as Hidden Markov Models, Deep Neural Networks (DNN) for acoustic modeling and n-gram and DNN for language modeling. Although statistical modeling algorithms are mostly language independent and proved to work well for a variety of languages, reliable parameter estimation requires vast amounts of training data. On the other hand, large-scale data resources for research are available for less than 100 languages and the costs for these collections are prohibitive to all but the most widely spoken and economically viable languages. This calls for the development of cross-lingual and/or multilingual speech processing/recognition systems.

In cross-lingual speech recognition, resources of a language (source/donor language) are used to develop speech recognition system for another (target language) with or without little adaptation data from the target language. Multilingual speech recognition system is described as a system that is able to recognize multiple languages which are presented during training ([Schultz and Waibel, 2001]). ([Vu et al., 2014]) described multilingual ASR as system in which at least one of the components (feature extraction, acoustic model, pronunciation dictionary, or language model) is developed using data from many different languages. Although multilingual ASR systems are useful in other contexts, they are particularly interesting for under-resourced languages where training data are sparse or not available at all ([Schultz and Waibel, 2001]). Furthermore, they provide an appealing solution for multilingual, multi-Ethnic, and economically disadvantaged countries, such as Ethiopia.

Ethiopia is a multilingual and multi-ethnic country where over 80 languages are spoken by the citizens. ([Ethnologue, 2019]) states that, “The number of individual languages listed for Ethiopia is 90. Of these, 88 are living and 2 are extinct. Of the living languages, 85 are indigenous and 3 are non-indigenous:
When it comes to language resources required for the development of speech and language processing tools, almost all Ethiopian languages are under-resourced. On the other hand, developing large-scale language resources is not economically viable. Thus, alternative approaches need to be used to make Ethiopians benefit from speech and language processing tools. Accordingly, we are currently investigating the development of multilingual speech recognition system for Ethiopian languages. For this purpose, we will use GlobalPhone (Schultz et al., 2013), a multilingual database of high-quality read speech with corresponding transcriptions and pronunciation dictionaries in more than 20 languages. To use this resource, it is mandatory to identify which languages are closely related with Ethiopian languages and therefore will be useful in the development of multilingual ASR.

In this paper, we present the analysis of GlobalPhone (GP) and speech corpora of Ethiopian languages (Amharic, Tigrigna, Oromo and Wolaytta) which are recently developed (Abate et al., 2020). The aim is to select speech data from GP and related Ethiopian Languages for the development of multilingual Automatic Speech Recognition (ASR) system for the Ethiopian languages. We have analysed the phonetic overlaps among GP and Ethiopian languages based on International Phonetic Association (IPA) sound representation. Moreover, morphological complexity of the GP and Ethiopian languages has been analyzed based on type to token ration (TTR) and Out of Vocabulary (OOV) rate calculated on the basis of training transcriptions.

2. Available Resources

2.1. GlobalPhone

GlobalPhone (GP) is a multilingual data corpus that comprises: 1) audio/speech data, i.e. high-quality recordings of spoken utterances read by native speakers, 2) corresponding transcriptions, 3) pronunciation dictionaries covering the vocabulary of the transcripts, and 4) baseline n-gram language models. The first two are referred to as GP Speech and Text Database (GP-ST), the third as GP Dictionaries (GP-Dict), and the latter as GP Language Models (GP-LM). GP-ST is distributed under a research or commercial license by two authorized distributors, the European Language Resources Association (ELRA) (two authorized distributors, the European Language Resources Association (ELRA) (two authorized distributors, the European Language Resources Association (ELRA), referred as AM2005. This contains 20 hours of training speech collected from 100 speakers who read a total of 11k sentences, development and test sets read by 20 other speakers (10 each). 2) The Amharic read speech corpus, referred as AM2020, prepared at Addis Ababa University (AAU) together with the preparation of speech corpora of the other three languages.

The corpora of the Ethiopian languages have been collected in Ethiopia under a thematic research funded by AAU (Abate et al., 2020). The Amharic, Tigrigna and Oromo speech corpora consist of speech of 98 readers each. Most of the speakers of the languages, read 121 to 130 sentences. The size of the training speech of these three languages is 26 hours for Amharic and 22 hours for Tigrigna and Oromo. The Wolaytta corpus consists of recordings of 85 speakers where most of them read 140-150 sentences. Considering the difficulty of getting 100 readers for Wolaytta and aiming at collecting not less than 20hrs of speech, 150 utterances were assigned to each speaker. This way it became possible to collect a speech corpus of 29 hours.

3. Analysis Of Globalphone and Ethiopian Languages Corpora

3.1. Language Family

The languages considered in our analysis fall into 10 language families. Austro-Asiatic: Hausa and Vietnamese; Cushitic: Oromo; Indo-European: that includes Germanic (English, German and Swedish), Ro-
mance (French, Portuguese and Spanish) and Slavic (Bulgarian, Croatian, Czech and Polish and Russian); Japonic: Japanese; Koreanic: Korean; Kra-Dai: Thai; Omotic: Wolaytta; Semitic: Amharic, Arabic and Tigrigna; Sino-Tibetan: Mandarin; Turkic: Turkish and Uyghur.

3.2. Writing System

The written language contains all types of writing systems, i.e. logographic scripts (Chinese Hanzi and Japanese Kanji), phonographic segmental scripts (Roman, Cyrillic), phonographic consonantal scripts (Arabic), phonographic syllabic scripts (Japanese Kana, Thai), abugida/Ethiopic (Amharic, Tigrigna), linear nonfeatural (Uyghur) and phonographic featural scripts (Korean).

3.3. Sound System

Phonetic information is important in multilingual speech recognition. Considering this fact, we have analysed the sound system of the GP as well as Ethiopian languages. In the analysis, a broad selection of phonetic characteristics have been considered, e.g. tonal sounds (Mandarin, Thai, Vietnamese, Oromo, Wolaytta), consonantal clusters (German), nasals (French, Portuguese), plosive sounds (Amharic, Oromo, Wolaytta), uvular (Uyghur) and palatized sounds (Amharic, Oromo, Tigrigna, Wolaytta, Russian).

<table>
<thead>
<tr>
<th>No. of Lang.</th>
<th>No. of Phone</th>
<th>Consonants</th>
<th>Vowels</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>m, n, s</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>k, l, t</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>b, d, f, p</td>
<td>u</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>j</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>g</td>
<td>i, o</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>v, z</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>h, f</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>r</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>w</td>
<td>r</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>x, p, ѡ, 3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ŋ</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>d, t</td>
<td>a:, i; a i</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>ą</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ts, ɾ</td>
<td>ọ, u:, a</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>e:</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>s, ɹ</td>
<td>y, ai, ə</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c, ɾ, j, kl, p, ʰ, ʰ, ɾ, ɹ t', ɹf, z</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>d, ɹ, ɹ, s, ɾ', ɾ'</td>
<td>ě:, əe, əu, au, əu, e, əu, j, ɻ, əu, əu, əu</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b, ɾ, j, й, ɻ, ы, ь, ь, ь</td>
<td>a, u, əe, ə, ə, ə, i, ɻ, ə, ə, ə, u, ə, ə, u; ə, je, jə, ɻ, ə, ə, ə, u, ə</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Polyphones shared by 2 or more languages

We have analyzed and identified language independent phones (polyphones), phones occurring in more than one languages, and language dependent (monophones), phones that occur in only one language (Andersen et al., 1993) as it is done in (Schultz and Kirchhoff, 2006).

The phone analysis is done on the basis of the pronunciation dictionaries we have at hand for each of the languages. Table 1 indicates the polyphones that occur in two or more languages.

In addition to identification of polyphone and monophone, we analyzed the sound overlap among the GP and the four Ethiopian languages based on the sound representation of the International Phonetic Association (IPA). That means we considered sounds from different languages similar if they are represented by the same IPA symbol. Otherwise, they are considered as different sounds. Figure 2 indicates the coverage of sounds of a language (values being 0% to 100%), for example Amharic, in the rest of the languages. The dark blue color indicates 100% overlap whereas light yellow indicates low or no overlap.

3.4. Morphological Property

The morphological complexity of a language affects the quality of a language model and the coverage of decoding vocabulary (pronunciation dictionary). Since language model and pronunciation dictionary are components of a speech recognition system that affect performance, we have analyzed the morphological complexity of the GP and Ethiopian languages based on the training and the evaluation set transcriptions. The languages considered in our analysis cover many morphological variations, e.g. agglutinative lan-

Figure 1: The phonetic sound overlap.
As can be seen from Figure 1, there is much phone overlap among the Ethiopique languages. Interestingly, all Amharic phones are covered by Tigrigna. We expected high phonetic overlap among the Semitic languages (Amharic, Tigrigna and Arabic), however Arabic has low phone overlap with the rest of the Semitic languages. From GP, Turkish, Uyghur and Croatian cover most phones of the Ethiopian languages. The Figure also shows that there is high phone overlap among three of the Slavic languages: Croatian, Bulgarian and Russian. Although, Polish and Czech also fall under Slavic language family, our analysis does not show high phone overlap of these languages with the rest of the Slavic languages. On the other hand, Korean and Mandarin seem to have less phone overlap with the rest of the GP as well as Ethiopian languages.
guages (Turkish, Korean), compounding languages (German), and non-concatenative root-pattern morphology (Amharic, Tigrigna and Arabic), and also include scripts that completely lack word segmentation (Chinese, Thai).

We have computed type-token ratio (TTR), calculated as vocabulary size divided by text length, based on the training transcriptions. (Kettunen, 2014) showed that TTR can order the languages quite meaningfully in a morphological complexity order or at least groups most of the languages with same kind of morphological complexity and clearly separates the most and least morphologically complex languages. Since TTR is affected by the length of the text sample, we also computed average TTR (ATTR) for the training transcription based on k disjunct 1000-utterance subsets of the training set. In each iteration we randomly select 1000 utterances, compute TTR, remove these utterances from the pool, and then continue with the next iteration. Finally, the ATTR is computed using TTR values of each distinct 1000 utterances. Figure 2 and 3 show the TTR and ATTR for each of the languages considered in our analysis.

![Figure 2: Type-Token Ratio.](image1)

![Figure 3: Average Type-Token Ratio.](image2)

As shown in both Figures, TTR and ATTR reflect the morphological complexity of the languages. The languages are arranged from morphologically more complex to less complex. Korean is indicated as the most morphological complex language, followed by Amharic (for both Amharic corpora) and Tigrigna. On the other hand, English, Hausa, Japanese, Mandarin and Thai are identified as less morphologically complex languages. However, we used segmented at word (multi-character or multi-syllable) transcription for Japanese, Mandarin and Thai and therefore, the Figure may not reflect the true morphological property of these languages. But, in general, the ATTR seem to reflect the morphological complexity of the languages.

Another metric that reflects morphological complexity and commonly used in the ASR community is Out of Vocabulary (OOV) rate. In ASR, one OOV word accounts to one or one and half wrongly recognized word/s. Mostly high OOV means high word recognition error rate. We have calculated the OOV rate (see Figure 4) on the evaluation set of each of the languages against the different vocabulary sizes taken from the training transcriptions. Our analysis of the morphological complexity of the GP and Ethiopian Languages, both using TTR and OOV, helps to know which languages are more challenging with respect to the two components of the ASR system: vocabulary and language models. As a solution to the morphological complexity problem, morphemes (instead of words) have been used as units in these models. The other alternative, i.e. the use of large vocabularies and language models are limited by the (very) small amounts of data available for under-resource languages. Depending on the availability of resources, we will study the impact of these approaches in multilingual as well as monolingual ASR of morphologically complex languages.

![Figure 4: OOV of the Evaluation Set.](image3)

4. Conclusion and Future Direction

In this paper we presented the analysis of Global-Phone and four Ethiopian languages speech corpora that we intend to use for the development of multilingual speech recognition system for Ethiopian languages. The purpose of the analysis is to select viable speech corpora from the available resources. The phonetic analysis shows that there is high phone overlap among Ethiopian languages although the languages are from three different language families. Moreover, Turkish, Uyghur and Croatian are found to have slightly high phone overlap with the Ethiopian languages. Our analysis also shows that, the Ethiopian languages’, considered in the analysis, morphology is not simple. Amharic has extremely high morphological complexity, next to Korean.

Our next step is conducting multilingual ASR experiments by adding Turkish, Uyghur and Croatian speech corpora from GP to the Ethiopian languages corpora.

5. Acknowledgments

The first two authors are grateful to Alexander von Humboldt for the experienced researchers fellowship grant.
6. Bibliographical References


